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Adaptive applications have computational workloads and communication
patterns that change unpredictably at runtime, requiring dynamic load
balancing to achieve scalable performance on parallel machines. Efficient par-
allel implementations of such adaptive applications is therefore a challenging
task. In this paper, we compare the performance of and the programming
effort required for two major classes of adaptive applications under three
leading parallel programming models on an SGI Origin2000 system, a
machine that supports all three models efficiently. Results indicate that the
three models deliver comparable performance; however, the implementations
differ significantly beyond merely using explicit messages versus implicit
loads/stores even though the basic parallel algorithms are similar. Compared
with the message-passing (using MPI) and SHMEM programming models,
the cache-coherent shared address space (CC-SAS) model provides substan-
tial ease of programming at both the conceptual and program orchestra-
tion levels, often accompanied by performance gains. However, CC-SAS



currently has portability limitations and may suffer from poor spatial
locality of physically distributed shared data on large numbers of processors.
© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Architectural convergence and software tools have made it possible for different
programming models to be supported on the same platform. At present, the three
leading programming models are explicit message passing, one-sided communica-
tion using symmetric private address spaces, and cache-coherent shared address
space (CC-SAS). The message-passing paradigm is perhaps the most popular, and
commonly implemented by using the MPI library. The SHMEM library is similar
to MPI but uses symmetric address spaces for the individual processes. Thus,
communication in SHMEM requires only one process to be explicitly involved, and
any process can specify remote data using their local name and the process identi-
fier. CC-SAS, on the other hand, assumes a global shared address space, leverages
hardware cache-coherency features, and accesses remote data implicitly via
ordinary loads and stores.1

1 The words process and processor are used synonymously throughout this paper.

Unfortunately, it is not obvious how these three programming models compare
in terms of parallel performance and ease of programmability. Our previous studies
[16, 17] have shown that even for nonadaptive applications, using different
programming models significantly affects overall performance and requires varying
amounts of programming effort. In this paper, we focus on adaptive applications in
which the computational workloads and/or the communication patterns/volumes
change at runtime, requiring dynamic load balancing to achieve scalable perfor-
mance on parallel machines. Applications that exhibit such irregular unpredictable
memory accesses and communication patterns have become increasingly important
in scientific and engineering fields, as more complex phenomena and domains are
studied. However, obtaining scalable performance for this class of applications on
current state-of-the-art multiprocessor systems is a challenging task.
Several researchers have investigated the parallel performance of various adaptive
applications on different computer platforms. Martonosi and Gupta examined a
wire routing program and found that, compared to a shared-memory implementa-
tion, the message-passing model reduced communication volume at the cost of
compromising solution quality [8]. Singh et al. found CC-SAS, when implemented
efficiently on the Stanford DASH machine, to provide substantial programming
ease and likely performance advantages for hierarchical N-body applications [19]
and a number of graphics algorithms [18]. Dikaiakos and Stadel conducted
performance comparisons of cosmological simulations on the Intel Paragon and
KSR-2 machines, and found that the shared-memory version running on the
KSR-2 outperformed the message-passing code running on the Paragon [4]. More
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recently, Oliker and Biswas examined the performance of a dynamic unstructured
mesh adaptation algorithm using three different programming models and con-
cluded that a multithreaded implementation on the Cray (formerly Tera) MTA was
the simplest and showed the most promise [11]. However, each programming
paradigm in the last study was implemented on a different platform, making direct
performance comparisons rather difficult.
Most of these studies did not compare the algorithmic and coding implications of
using various programming paradigms. The studies also differ substantially from
ours since we use a common high-performance computer with sophisticated
implementations of the three different programming models. The use of a single
platform makes the performance data and the code comparisons very relevant. Our
overall research goal is to study the problem of programming models for adaptive
applications in a layered framework. The top layer is called the application layer.
The applications selected for this work needed to satisfy the following criteria:

• require irregular and unpredictable communication, as well as dynamic load
balancing,

• have wide applicability to problem domains that require high-performance
computing,

• require the use of large numbers of processors, and

• be nontrivial to obtain scalable performance.

Based on these requirements, we selected two typical applications: dynamic remeshing
and N-body as our test cases. Details of these applications are given in Section 2.
For each application, we develop one or more programs for the different
programming models using well-known algorithms.
The middle layer in our framework is the programming model layer, which pro-
vides different programming interfaces to the application layer. The two dominant
parallel programming paradigms are message passing and cache-coherent shared
address space. However, there exists another programming model called SHMEM,
which lies between these two extremes. A brief description of these models is given
in Section 3.
The bottom layer is called the communication layer and consists of the computa-
tion and communication hardware, and low-level software. In this work, we focus
on tightly coupled distributed shared-memory multiprocessors. In particular, we
selected the SGI Origin2000 platform, which has an aggressive communication
architecture and provides full hardware support for the CC-SAS model. The MPI
and SHMEM programming models are built in software but leverage the under-
lying hardware for a shared address space and efficient communication. In fact, the
performance of the latter two models on this machine is comparable to or better
than that on most systems not supporting the CC-SAS model in hardware.
This layered approach allows us to confine our investigations to each individual
layer, isolate any problems, and find suitable solutions. For example, there are two
different considerations in the application layer: at the algorithmic level and at the
implementation or program orchestration level. We examine whether the algorithms
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that deliver the best performance for each programming model are similar. For
nonadaptive applications, we found that the best-performing algorithms were
similar across models [16], which is a positive indicator for application developers.
If this is true for the two chosen adaptive applications, we will investigate if there
are substantial implementation differences, and how they affect overall perfor-
mance. In the programming model layer, we compare the conceptual and
programming complexities of the different paradigms, although these issues are
sometimes quite subjective. We need to determine if the performance difference
between programming models is caused by this layer. For example, in our previous
study using regular applications [13], we found that the performance of the MPI
implementation could be made competitive with the SHMEM and CC-SAS ver-
sions by eliminating an extra data copy and by optimizing the communication
buffer management, although this had some programming implications. Finally,
since all the programming models are built on the same communication layer, their
performance is directly comparable.
We find that all three programming models for both adaptive applications can
achieve scalable performance on the Origin2000 (at least up to 64 processors). The
algorithms needed by the different programming models for best overall perfor-
mance are similar, but the implementations differ significantly at the conceptual
and program orchestration levels, far beyond whether explicit messages or implicit
loads/stores are used. Results indicate that compared with MPI and SHMEM, the
CC-SAS strategy provides substantial ease of programming, often accompanied by
performance gains. However, CC-SAS may suffer from poor spatial locality of
physically distributed shared data on large numbers of processors.
More generally, if the applications are properly programmed, the parallel per-
formances for these three programming models are quite similar. CC-SAS
programs usually require less time to develop; however, many naive implementa-
tions will not achieve high performance. Significant insights about the application
are needed to structure the programs to obtain better data locality and reduce
synchronization. In fact, the technologies applied are often similar to those used in
message-passing programs. For example, we build a high-level locally essential tree
to reduce the page faults in the N-body application and use a partitioner for load
balancing in the dynamic remeshing application. The important practical advantage
of the CC-SAS model is that it allows simpler implementations of these complex
algorithms because of the implicit naming and communication features. A big
disadvantage of CC-SAS is its loss of portability. Many supercomputing platforms
still do not directly support this model. Compared with MPI, SHMEM is relatively
easier to implement due to its one-sided communication and often delivers higher
performance, but it is also limited by the portability problem.
The remainder of this paper is organized as follows. Section 2 gives an overview
of the two adaptive applications being investigated in this work. In Section 3, we
briefly describe the three parallel programming models: message passing using MPI,
SHMEM, and CC-SAS. The implementation details for the two applications and
the programming differences among the three models are described in Section 4.
Performance results are presented and critically analyzed in Section 5. Finally,
Section 6 summarizes our key conclusions.
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2. ADAPTIVE APPLICATIONS

In this section, we give an overview of the two applications being investigated in
this work. Dynamic remeshing and N-body are two typical adaptive problems that
satisfy the application layer criteria mentioned in Section 1. For these kinds of
irregular dynamic applications, the processor workloads and the interprocessor
communication can change dramatically with time; thus, dynamic load balancing is
a critical component. Communication also tends to be naturally finegrained, which
can be challenging. In designing efficient parallel implementations for these adap-
tive applications, data locality is another important consideration. In Section 4, we
will focus on these two issues to analyze the algorithmic and implementation differ-
ences among the different programming models, and discuss the programming
effort required for each application and paradigm.

2.1. Dynamic Remeshing Problem

Dynamic local mesh refinement [3] is required to efficiently capture physical
features of interest that evolve with time. It provides users the opportunity to
obtain solutions that are comparable to those on globally refined grids but at a
much lower cost. Adaptive unstructured meshing is a powerful tool in the numeri-
cal modeling of physical phenomena on complex irregular domains. The mesh used
in our experiments is that often used to simulate flow over an airfoil. Mesh refine-
ment is usually required around the leading edge of the airfoil, and along the shocks
that form on the upper and lower surfaces at transonic Mach numbers. This physi-
cal scenario is simulated by geometrically refining the grid in these regions. Further
details about this application can be found in [11].
The flowchart for the solution process is shown in Fig. 1. The initial mesh is first
partitioned, and a submesh is assigned to each process. An initial matrix is then
generated from each submesh by assigning a random value in (0,1) to each (i, j)

FIG. 1. Flowchart of the dynamic remeshing problem.
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entry corresponding to the vertex pair (vi, vj) of the edges in the submesh. All other
off-diagonal entries are set to 0. The matrix is made positive definite by setting the
diagonal entries to a large value (diagonally dominant). The publicly available
Aztec library [21] is then used to solve the sparse linear system. Details of the
matrix generation process and the solution phase are given in [13]. After a speci-
fied convergence is attained, the mesh adaptor is invoked. Based on an error
tolerance or geometric information, it marks the edges in the regions that need to
be refined. However, the actual refinement is delayed until after the load balancer
in order to reduce the data movement overhead and achieve better load balance in
the adaptation phase. If the marked mesh will cause the current partitions to
become unbalanced, the load balancer assumes responsibility for repartitioning the
mesh and remapping the data. After refinement, the matrices for the submeshes are
regenerated and passed onto the solver. The entire cycle is then repeated until the
computation is done. Extensive details about this mesh adaptation procedure and
the dynamic load balancing strategy are given in [10, 12].

2.2. N-Body Problem

The N-body problem is a classical one, and arises in many areas of science and
engineering such as astrophysics, molecular dynamics, and computer graphics.
Having specified the initial positions and velocities of the N interacting bodies, the
problem is to find their positions after a certain amount of time. The Barnes–Hut
method [2] is widely used to solve this problem today. It has three phases within
each iteration of the simulation. In the tree-building phase, an octree is constructed
to represent the distribution of the bodies. It is implemented by recursively parti-
tioning the three-dimensional space into eight subspaces until the number of bodies
in each subspace is below a certain threshold. In the second phase, the force
interactions between individual bodies are computed. Each body traverses the
octree starting from the root. If the distance between a body and the visited sub-
space (cell) is large enough, the entire subtree rooted there is approximated by the
cell; otherwise, the traversal continues recursively with the children. In the third and
final phase, each body updates its position and velocity based on the computed
forces.

3. PROGRAMMING MODELS

We chose an SGI Origin2000 machine as the common platform to compare and
contrast the different programming models. The Origin2000 is a scalable, hardware-
supported cache-coherent nonuniform memory access (CC-NUMA) system, with
an aggressive communication architecture. It therefore automatically supports the
CC-SAS programming model. The MPI message-passing and SHMEM models are
built in software but leverage the machine’s shared address space and the efficient
communication features. We give here a brief description of all three programming
models; further conceptual comparisons can be found in [1, 9].
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3.1. Message Passing Using MPI

In the message-passing model, each process has only a private address space, and
must communicate explicitly with other processes to access their (private) data.
Communication is performed via send–receive pairs, so processes on both sides are
explicitly involved. The sender specifies whom to send the data but not the destina-
tion address; these are specified by the matching receiver whose address space they
are in. The data typically are packed and unpacked at each end for efficient
transfer. This model is perhaps the most difficult to program for irregular applica-
tions; however, the benefits lie in enhanced performance for coarse-grained
communication and implicit synchronization through blocking communication.
We used an improved version of MPICH [16], the portable implementation of
MPI for our experiments. It uses the Origin2000 shared address space and fast
communication support to accelerate message passing. The MPICH performance
was much better than the vendor-supplied implementation of MPI. We suspect
that this is because MPICH uses one copy (instead of two), and lock-free queue
management. It also allows the programmer to instrument the implementation so as
to distinguish between wait time and time to copy remote data. MPICH is con-
sistent with the message-passing model in that application data structures are only
allocated in private per-process address spaces. However, the communication
buffers for the send and receive operations are allocated in the shared address space
during the initialization phase; they include a shared packet pool for exchanging
control information (all messages) and data (short messages), and buffer space for
data (large messages). All copying of data to and from the buffers is done with the
memcpy function. Note that while hardware support for load/store communication
is very useful, an invalidation-based coherence protocol, such as on most cache-
coherent machines including the Origin2000, can make such producer–consumer
communication inefficient compared to an update protocol or a hardware-
supported but noncoherent shared address space.

3.2. SHMEM

The SHMEM library provides the fastest interprocessor communication because
of its lower protocol overhead. Basically, each process has its personal address
space as in message passing, but the address spaces are symmetric. Any process can
name the variables in another process’s address space by using the local name and
the remote process identifier. The major primitives are the put and get com-
mands. The get operation is used to copy a variable amount of data from another
process (using bcopy that is similar to the memcpy used in message passing) and
explicitly replicate it locally. A put is the dual of get; however, each is an inde-
pendent and complete way of performing data transfer. Only one is used per com-
munication, unlike explicit message passing, which requires send–receive pairs.
Thus, the communication becomes one-sided but remains explicit.
In SHMEM, there is no concept of a uniformly addressable shared address space
that all processes can access. However, the private address spaces of processes that
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contain the logically shared data structures are identical in their data allocation. By
providing a global segmented address space and avoiding the need for matching
send–receive operations, the SHMEM model delivers significant programming
simplicity over MPI, even though it too does not provide fully transparent naming
or replication.

3.3. Cache-Coherent Shared Address Space (CC-SAS)

In this model, remote data are accessed just like locally allocated data (or data in
a sequential program), using loads and stores. A load/store cache miss causes the
data to be communicated in hardware at cache line granularity, and automatically
replicated in the local cache. Unlike the get/put operations in SHMEM, ordinary
load/store operations are used to fetch/send data. The transparent naming and
replication provides programming simplicity, particularly for dynamic fine-grained
applications. In our parallel CC-SAS implementations, the parent process uses the
Unix fork command to spawn off child processes, one for each additional proces-
sor, at the beginning of the program. These cooperating processes are then assigned
chunks of work, while locks and barriers are used for synchronization. The child
processes are finally terminated at the end of the last parallel section.

4. IMPLEMENTATION DETAILS

In this section, we describe specific implementation details of our two adaptive
applications using the different programming models. We compare only the MPI
and CC-SAS versions, since SHMEM is similar to MPI except primarily for its one-
sided communication. In other words, instead of using send–receive pairs as in
MPI, the SHMEM model only needs either a put or a get. However, there is one
other important difference between MPI and SHMEM in the way they are used to
dynamically allocate memory. In MPI, dynamic memory allocation is performed by
invoking the malloc utility locally and independently in different processes.
Instead, in SHMEM, if the program needs to allocate memory for symmetric
variables, it must reserve exactly the same size of memory in all processes.

4.1. Dynamic Remeshing Problem

For this application, we focus on the three main modules: mesh adaptor, load
balancer, and flow solver, and then compare and contrast the MPI and CC-SAS
implementations and program orchestrations that arise because of the nature of the
programming models. We show that some of the differences are due to reasons
beyond using explicit communication messages rather than loads/stores, even
though the same basic partitioning algorithm for load balancing and communica-
tion reduction is used. Overall, the CC-SAS model provides substantial ease of
programming.

Mesh adaptor. In the mesh adaptor module, all the edges of the unstructured
mesh are first marked to indicate whether they need to be bisected, either based on
geometric information or solution-driven error tolerance. However, the actual mesh

248 SHAN ET AL.



refinement is delayed until after the load balancer module is executed. This delay
has three beneficial side effects: (i) it improves the load balance of the refinement
phase since a larger fraction of the processors participate in the mesh adaptation,
(ii) it reduces the communication volume needed for data remapping after the
repartitioning since refinement is performed by the destination processors, and (iii)
it increases data locality since the flow solver works on the newly partitioned
refined mesh. Detailed explanations of these side effects are given in [10, 12].
In the MPI implementation, each process owns a submesh and maintains the
necessary local data structures to represent it. Thus, each mesh object (vertex, edge,
element) has a local index. These local data structures and indices provide good
data locality for the MPI program. However, in order to exchange information with
other processes, each process also maintains a mapping between the local index and
the global index (which is the index of the mesh object in the global mesh).
In CC-SAS programs, a complete shared mesh is maintained. A potential draw-
back of this strategy is that the shared data structures cannot be easily changed
without synchronization. Unfortunately, mesh refinement involves modifying
several data structures by inserting new mesh objects and altering their relation-
ships. This need for synchronization can be dramatically reduced by letting each
process precompute its number of new vertices, edges, and elements, and applying
the range to the global data structures. This enables the process to modify its parti-
tion of the data structures with only a few synchronizations, but at the cost of some
additional complexity. However, MPI programs must maintain a lot of extra data
structures to track ownership of mesh objects and to orchestrate communication.

Load balancer. Dynamic repartitioning to balance processor workloads is an
essential phase in any parallel adaptive mesh computation. As the numerical simu-
lation evolves, various regions of the mesh are dynamically refined, leading to load
imbalance that hurts the overall performance [10, 12]. Significant research has
been done on parallel partitioning algorithms, and several state-of-the-art MPI
software packages are currently available on the World Wide Web [5, 22]. We
chose ParMETIS [5, 6] as the basic partitioner for this work because of its good
overall performance and wide availability.
ParMETIS is a multilevel partitioner that consists of three main phases: coars-
ening the graph to be partitioned, partitioning the coarse graph, and projecting the
partitioned graph back to the given initial graph. The coarsening is implemented by
using a vertex-matching scheme where the ‘‘heaviest’’ edge incident on a vertex is
collapsed. To find a match for vertices on partition boundaries, a try–confirm stra-
tegy is used. This is because in the MPI model, a message must be received from the
remote process to confirm the matching, as other processes may also try to match
their own boundary vertices with the same vertex. After the coarsening phase is
complete, the coarsest graph is partitioned and the ownership of its vertices
projected back to the initial graph. During this uncoarsening projection phase, each
process reconsiders the ownership of its boundary vertices to reduce the overall
edge cut and to further balance the workload. Due to private address spaces in
MPI and the lack of global information, these decisions are made based on an
incomplete local view.
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A load balancer is simpler to implement in CC-SAS programs since all processes
share the same global view. In addition, a load balancer enhances data locality,
thereby reducing contention as well as the number of cache misses and page faults.
The MPI try–confirm process in ParMETIS is no longer required as the communi-
cation to check for matchability is replaced by synchronization. When a process
finds a matching vertex, it first locks it and checks whether it has already been
matched. This procedure is obviously much easier to implement. The initial parti-
tioning is straightforward because of the shared address space. Finally, when
updating the ownership of boundary vertices in the uncoarsening phase, CC-SAS
enables a decision to be made based on a consistent global view, which helps
generate more balanced partitions.
After the partitioning, data must be remapped among all the processes for the
MPI implementation. In other words, each process may have to send/receive mes-
sages to obtain the data that corresponds to its assigned partition. This remapping
phase is very expensive for large computational meshes. In our application,
remapping is performed in bulk fashion, as opposed to communicating several
small individual messages. The advantages include the amortization of message
start-up costs and good cache performance. The disadvantages are complexity and
some extra work. Basically, data leaving a partition are first stripped out and
placed in a buffer, then appropriately communicated, and finally integrated into the
corresponding data structure of the destination processor.
No explicit data remapping is necessary for program orchestration in the
CC-SAS implementation. However, the quality of the partitioning nonetheless
affects data locality. For instance, if data movement is minimized, most mesh
objects will remain assigned to the same process before and after a partitioning,
thereby enhancing data locality. Moreover, the new objects that are created by
subdivision are not used by other processes during the refinement stage.
Using a partitioner like ParMETIS rather than simply splitting the data struc-
tures in CC-SAS guarantees that each process is assigned a continuous submesh to
work on, and that synchronization is only needed on the subdomain boundaries.
This greatly reduces the number of synchronization operations, and allows each
process to obtain good temporal and spatial data locality. Otherwise, the CC-SAS
implementation is unable to achieve scalable performance [11].

Flow solver. The flow solver module consists of matrix generation and the
actual numerical solver. The matrix generation step is application dependent, and
as described in Section 2.1, a diagonally dominant positive definite matrix is gener-
ated for each submesh. In the message-passing model, this requires collecting
information from all neighbors of boundary vertices. In our implementation, the
process owning a boundary vertex is responsible for gathering this data. In
CC-SAS, there is no need for any explicit communication.
Numerical solvers constitute an immense area of research. Our objective in this
paper is to study only the effects of the various programming models. We have
therefore selected the Conjugate Gradient (CG) algorithm, which is the best-known
Krylov subspace method for solving the linear system Ax=b. Algorithmic details
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about CG are given in [14]. In our work, we use the publicly available Aztec
library [21]. In the MPI version, the matrix A is partitioned by rows (each row
corresponds to a vertex in the mesh) among the processes, based on the partitioning
given by the load balancer. Each process prepares a list of the row indices of A that
it owns, as well as those of the vectors x and b.
The solver has been separated into two phases: matrix transformation and itera-
tive solution. In the transform stage, the vertices are grouped as internal vertices
(those that do not need communication with other processes), border vertices (those
that need communication with other processes), and external vertices (those owned
by other processes). Each process reorders its submatrix (based on internal, border,
and external vertices in that order) into a nearly block diagonal form to obtain
good data locality for the time-consuming iterative solution phase. In MPI
programs, this involves expensive hashing, searching, and broadcast operations, due
to all the data being in private address spaces. In Aztec, a large number of small
messages are used for the communication. However, in our implementation, much
of the vertex ownership information can be provided during matrix generation
without additional cost. Thus, the Aztec interface can be modified accordingly. Till
date, we have accomplished these modifications only partially so that most of the
matrix transformation work is still left within Aztec. In CC-SAS programs, a
shared array is used to provide all the information needed by the reordering.
Compared to MPI, the conceptual/orchestration complexity and programming
effort are greatly reduced.
The kernel of the CG iterative solver consists of a sparse matrix–vector multiply
(SPMV), three vector updates, and three dot products. However, for many practical
applications, the SPMV dominates the operation count. The basic solver algorithm
is similar across programming models except for the differences in explicit
messaging versus implicit loads/stores.

4.2. N-Body Problem

The Barnes–Hut method [2] for solving the N-body problem consists of three
main phases: tree-building, force calculation, and particle update. For each of these
modules, we compare below the MPI and CC-SAS implementations.

Tree-building. Tree-building is the most complex step of the MPI implementa-
tion. In this phase, each processor builds a locally essential tree, which allows the
force calculation phase itself to proceed without communication. In the first
iteration, the domain is partitioned into a fixed number of particles that are dis-
tributed equally among the processors. Subsequent iterations use the previous distri-
bution as the starting point. A popular message-passing implementation strategy uses
the orthogonal recursive bisection (ORB) partitioner [23]. We use a different
approach. A cost distribution tree is computed in parallel, requiring the use of
global communication. This cost represents the expected amount of work required
to perform force calculation for the particles within a cell, and is used as the load
balancing metric. If a cell’s cost is greater (less) than a specified threshold, its space
is recursively subdivided (collapsed) into eight (one) subspaces. Thus a limited
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global tree that represents the cost distributions is created. This tree is partitioned
using the costzones [19] technique, which assigns each processor a contiguous
range of cells of approximately equal cost in Peano–Hilbert order. A data remapper
uses the computed partitioning to distribute the cells and their corresponding
particles, thereby creating a cost balanced local tree on each processor. A communi-
cation step is finally required to appropriately distribute the particle and cell
information, thus allowing each processor to build its locally essential tree.
We also implemented the ORB version in a manner similar to that reported in
[7, 15], and found no significant performance differences with our costzones
approach. Instead, using costzones allowed us to make easier comparisons with the
CC-SAS implementation of the N-body problem.
The CC-SAS version of the N-body simulation is obtained from the SPLASH-2
suite [24] and further optimized. The tree-building phase varies dramatically from
the MPI implementation since only one global octree is created. Each process is
responsible for those particles assigned to it based on the costs in the previous
iteration. The global octree is built by concurrently adding particles to the single
shared tree, using synchronization locks if necessary. When the cost (defined in
costzones) of a cell exceeds a specified limit, that cell is dynamically subdivided into
eight new subcells. To guarantee correctness, a synchronization lock is placed on a
cell whenever a particle is inserted into it, or during cell subdivision. Unlike MPI,
explicit communication is not required to compute the shared cost distribution tree.
The particles are then partitioned using the costzones technique, by assigning each
processor a contiguous section (in the Peano–Hilbert ordering sense) of the global
tree. This ordering strategy ensures cost balanced partitions and good data locality
during the subsequent force calculation phase. Note that this partitioning approach
is algorithmically similar to that used in the MPI version; however, a data
remapping phase is not required in CC-SAS. Since all the bodies are globally
addressable, they can be reassigned to the processors without the need for explicit
communication.

Force calculation and particle update. The force calculation is the most expensive
phase of the N-body problem. In this step, each body computes its force interaction
with every other body (or cell) by recursively traversing the octree. The MPI
implementation uses the locally essential tree, created in the tree-building phase, to
perform a load balanced and communication-free force calculation. Each particle’s
cost is also kept track of, for building the cost distribution tree in the subsequent
iteration. In the third and final phase, each body updates its position and velocity
based on the results of the force calculation. The message-passing version of the
update phase is communication free, but suffers from some load imbalance. This is
because the costzones partitioning scheme used in tree-building is based on the cost,
not the number, of bodies. However, the computational overhead of the update
phase is a function of the total number of bodies in each partition. An additional
redistribution step to load balance the updates is not worthwhile, since this phase
constitutes a relatively small portion of the overall N-body simulation time. The
SHMEM version of this algorithm was transformed directly from the MPI code, by
replacing two-sided communications with one-sided communications.
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TABLE 1

The Number of Essential Source Code Lines for the Two Adaptive Applications

Dynamic remeshing N-body

Mesh adaptor Load balancer Flow solver Total Total

MPI 5,337 4,615 6,603 16,015 1,371
SHMEM 5,579 4,100 5,906 15,585 1,322
CC-SAS 2,563 2,142 3,725 8,430 1,065

In CC-SAS, once the global shared tree has been built, the force calculation is
computed in parallel without the need for synchronization. However, unlike the
MPI version, implicit communication is required during this phase since the global
tree is physically distributed among the processors. The particle update then pro-
ceeds in parallel, using the results of the force calculation. Once again, this step is
synchronization free, but requires implicit communication. The CC-SAS update
phase is also somewhat load imbalanced, for the same reasons as the imbalance
in the MPI update. To increase data locality for the next iteration, bodies are
reordered based on their processor assignment. The reordering step constitutes a
small fraction of runtime, which is dominated by the force calculation.
Overall, the CC-SAS implementation and conceptual orchestration are much
simpler than MPI. Using synchronization locks to build a global tree in a shared
address space is much less complex than creating a locally essential tree in a dis-
tributed-memory environment. However, the MPI force calculation and particle
update proceed with only the use of local memory unlike the CC-SAS version
which requires implicit communication.
In Table 1, we list the number of essential source code lines for all three
programming models for these two applications. Code sections for preparing test
data, debugging, and comments are not included. SHMEM is very similar to MPI
since they both use explicit communication; however, the one-sided SHMEM
library requires fewer lines of code. The CC-SAS codes require far fewer lines due
to their implicit communication that obviates the need to set up and maintain
special data structures and communication buffers. This also leads to substantial
ease in programming.

5. PERFORMANCE RESULTS

The Origin2000 machine used for the experiments reported in this paper contains
64 300-MHz R12K MIPS microprocessors, and is located at Princeton University.
Each processor has separate 32KB primary instruction and data caches, and a
unified 8 MB secondary cache with two-way associativity and a 128-byte block size.
The entire machine has 16 GB of main memory, with a page size of 16KB. There
are two processors in each node sharing a noncoherent bus. Pairs of nodes are
connected to a network router, and the interconnect topology across the 16 routers
is a hypercube.
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TABLE 2

Sequential Runtimes (in s) for Each Test Case of the Two Adaptive Applications

Dynamic remeshing N-body

Number of triangles Number of particles

156K 441K 1M 1.3M 16K 64K 256K 1M
6.41 24.85 69.17 97.13 3.39 15.04 67.69 329.81

Table 2 presents the sequential runtimes for both adaptive applications. For the
dynamic remeshing problem, we simulate flow over an airfoil and geometrically
refine regions corresponding to the locations of the stagnation point and the shocks
[11]. The original mesh contains 28K triangles, and grows to approximately 59K,
156K, 441K, 1M, and 1.3M triangles, through five levels of refinement. For this
work, we study only the last four levels in detail. For example, referring to the 1.3M
test case implies that the mesh adaptor increased the 1M-triangle mesh to 1.3M
triangles. The load balancing, matrix generation, and ensuing iterative solution
were then based on this newly generated 1.3M mesh. For the N-body problem, we
also tested four cases: 16K, 64K, 256K, and 1M particles. These data sets
compose two neighboring Plummer model galaxies that are about to undergo a
merger [20]. However, unlike our dynamic remeshing simulation, each N-body
problem represents an independent experiment. One interesting parallel perfor-
mance result is the superlinear speedups demonstrated by both applications in
some of the test cases. This occurs partly because as the number of processors
increases, a larger fraction of the problem fits in cache. The superlinear effect may
continue until the entire problem is accommodated in the combined caches of the
processors.
Furthermore, we analyze the per-process wall-clock time by decomposing it into
four parts: BUSY (time spent in computation), LMEM (time waiting for local
cache miss), RMEM (time waiting for remote communication), and SYNC (time
for synchronization). The BUSY time is obtained using SpeedShop, an integrated
package of tools that runs performance experiments on executables and lets one
examine the results of those experiments. The SYNC and RMEM times are
obtained by instrumentation. Finally, the LMEM time is derived by subtracting the
BUSY, SYNC, and RMEM times from the application’s total wall-clock time,
which is measured using an efficient hardware clock. In CC-SAS programs, we
cannot differentiate between LMEM and RMEM times using the available tools.
Thus, we lump them together as MEM time.

5.1. Dynamic Remeshing Problem

The performance of the dynamic remeshing problem for varying numbers of
triangles is presented in Fig. 2. In this rapidly adapting flow simulation, mesh
refinement and the ensuing load balancer are invoked after 10 iterations of the
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FIG. 2. Runtimes (in ms) for the dynamic remeshing problem on 16, 32, and 64 processors for
different data sets.

numerical solver. Future research will investigate the performance of this applica-
tion under varying flow solver iteration requirements. It is important to note that a
realistic application will consist of many mesh adaptations, and thus the
solverQ adaptorQ load-balancer cycle in Fig. 1 will be executed that many times.
Overall, the three programming methods show similar performance for the entire
application across all test cases. For the smaller data sizes, MPI and SHMEM
generally outperform CC-SAS. However, for our largest test case consisting of
approximately 1.3M triangles, the CC-SAS implementation has runtimes lower
than those of the message-passing versions.
Figure 3 presents the runtime breakdown for the 1.3M test case. CC-SAS has a
lower BUSY time than MPI or SHMEM, but suffers from higher SYNC

FIG. 3. Time breakdown for the 1.3M data set size on 64 processors.
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overheads. Also notice that the MEM time under all three programming models is
relatively high. In order to understand the overall runtime behavior, each of the
dynamic remeshing components must be examined individually.
The mesh adaptor module is responsible for refining the mesh in specified regions
in order to investigate localized flow phenomena in finer detail. As described in
Section 4.1, this phase consists of edge marking and mesh subdivision. The parallel
workload of the mesh adaptor is generally load imbalanced because the partitioning
process is designed to optimize the performance of the costly flow solver phase. In
MPI and SHMEM, each processor is responsible for refining its local region of the
mesh. To build a consistent final mesh, coarse-grained communication is used
across partition boundaries. CC-SAS, however, maintains a single shared mesh
that is concurrently refined. The global address space allows a reduction in the
programming complexity, but introduces a large volume of implicit communication
for such irregularly structured computations. CC-SAS also incurs an additional
algorithmic cost since synchronization locks are required to avoid possible race
conditions during the subdivision phase. The number of synchronization points is
minimized by precomputing the location of newly created triangles.
Figure 4 presents the mesh adaptor runtimes for the 156K- and 1.3M-triangle test
cases. The distributed-memory implementation significantly outperforms CC-SAS
for both data sizes due to its data locality and coarse-grained communication. We
experimented with the CC-SAS version by reorganizing the data structures in a
localized fashion as in the message-passing cases. With the modifications, the mesh
adaptor runtimes improved; however, the overall performance was unaffected as it
had the same MPI/SHMEM data remapping bottleneck. The performance differ-
ence between MPI and SHMEM is primarily in the local operations, and is prob-
ably caused by changes in the cache behavior due to the particular memory

FIG. 4. Runtimes (in ms) for the mesh adaptor module on 16, 32, and 64 processors for the 156K
and 1.3M data sets.
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allocation method used. In fact, Fig. 3 indicates that SHMEM has higher LMEM
time, which may simply be a function of cache conflicts. For the 1.3M data set, the
performance of the MPI and SHMEM mesh adaptor improves with larger numbers
of processors. However, for almost every test case shown, the CC-SAS performance
degrades as the number of processors increases. The irregular nature of unstruc-
tured mesh subdivision is inherently at odds with the globally shared mesh and thus
causes an increase in the volume of implicit communication, memory latency,
false sharing, and TLB misses [11]. In addition, the use of low-level synchroni-
zations hurts performance for larger numbers of processors. In conclusion, the
distributed-memory implementation of the mesh adaptor offers significant
performance advantages over CC-SAS.
The load balancing module is invoked after each iteration of the mesh adaptor,
to rebalance the processor workloads and minimize interprocessor communication
for the costly solver phase. Note that the partitioning is always performed on the
initial dual graph, which keeps the connectivity and partitioning complexity constant
throughout the adaptive computation [10]. In the load balancing module, there is a
significant algorithmic difference between CC-SAS and MPI. The MPI implemen-
tation calls ParMETIS to compute a new partitioning, followed by a data-remap-
ping phase that appropriately distributes the mesh. This message-passing remapping
phase incurs both the communication cost and the computational overhead for
breaking down and rebuilding the data structures. In CC-SAS, a partitioning phase
is used but data remapping is not required. Each processor is assigned its proper
subdomain, but the actual data redistribution is performed during the transform
phase of the flow solver. Thus, CC-SAS has a significant advantage during load
balancing.
Figure 5 presents the load balancing runtimes for the 1.3M data set. The total
CC-SAS time is significantly lower than that of MPI or SHMEM since it does not

FIG. 5. Runtimes (in ms) for load balancing (ParMETIS partitioning and remapping), and
partitioning quality on 16, 32, and 64 processors for the 1.3M data set.

PROGRAMMING MODELS FOR ADAPTIVE APPLICATIONS 257



FIG. 6. Runtimes (in ms) for the solver on 16, 32, and 64 processors for the 156K and 1.3M data sets.

perform data remapping. Interestingly, the CC-SAS ParMETIS implementation is
itself also substantially faster than the original MPI version, but partitioning time
alone is not sufficient to rate the performance of a partitioner; one needs to inves-
tigate partitioning quality as well. Partitioning quality is usually defined in two
ways: the computational load imbalance factor2 and the edge cut. Figure 5 shows

2 The load imbalance factor is the ratio of the workload on the most heavily loaded processor to the
average load across all processors.

that the CC-SAS code gives better workload balance among the processors (upto
an 8% improvement) at the cost of a larger number of cut edges. Future research
will examine shared-memory partitioning in detail. Note that for all three para-
digms, the ParMETIS time increases with larger numbers of processors, due to the
partitioners’ increased volume of computation and communication overheads.
Finally, the data-remapping time decreases with more processors. This is because
remapping time is a function of themaximum communication among processors [10].
The flow solver is the most expensive module of our dynamic remeshing simula-
tion. After each adaptation and load balancing phase, the newly generated mesh is
converted to a matrix, as described in Section 2.1. A transform step then rearranges
the matrix to improve data locality for the time-consuming CG iterative solution
procedure. Recall that the number of rows and nonzeros in our matrix corresponds
respectively to the number of vertices and edges in the underlying mesh. For
example, the matrix generated from the 1.3M data set contains more than 488K
rows and 1.9M nonzeros. The solution to this matrix requires 22 CG iterations.
Figure 6 presents the runtimes of the numerical solver using the three programming
paradigms for 156K and 1.3M triangles. These runtimes do not include the matrix
generation overhead (which is about 11% of the total execution time for the largest
test case running on 64 processors), since it is application dependent and beyond
the scope of this paper.
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Overall, the runtimes of the flow solver are quite similar on all three programming
models since their underlying algorithms are essentially identical. The implementa-
tion details, however, vary significantly. For the 1.3M case, there is a dramatic
improvement in performance with increasing numbers of processors. Partitioning
the matrix into more (smaller) subdomains results in improved cache reuse and
reduced solver times. The overhead of the transform in MPI and SHMEM is
substantially higher than CC-SAS. The distributed-memory matrix transformation
involves complex reordering based on internal, border, and external vertices. This
is necessary for efficient communication during the CG algorithm. The shared-
memory transform, however, simply assigns a block of rows to each processor
since no explicit communication is required. Nevertheless, SHMEM and/or MPI
slightly outperform CC-SAS for the 1.3M test case. This is due to the efficient
performance of the distributed-memory CG, which has better data locality and
lower communication volume than the CC-SAS implementation.
In summary, dynamic remeshing is an irregularly structured, dynamically adapt-
ing application, consisting of several distinct modules, each with its own perfor-
mance characteristics. None of the programming models presented in this paper is
best-suited for all these modules. The distributed-memory versions generally have
better data locality and consequently outperform CC-SAS during the mesh adapta-
tion and iterative solution phases, because all the data are already in local memory.
However, CC-SAS has the advantage of a global address space, which reduces
programming complexity and improves performance for a number of the modules.
For example, during load balancing, the CC-SAS version of ParMETIS partitions
the mesh faster than MPI or SHMEM. More importantly, CC-SAS does not
require a remapping phase, which accounts for a significant overhead on large data
sets. Finally, the CC-SAS transform phase of the flow solver outperforms both MPI
and SHMEM.
The total runtimes in Fig. 2 show that the advantages of MPI and SHMEM lead
to better overall performance for the three smallest data sets. The 1.3M test case
shows the crossover point where CC-SAS becomes the fastest implementation. For
this largest data set, the benefits of CC-SAS outweigh the advantages of MPI and
SHMEM. Thus, none of the programming paradigms is a clear winner for this
application in terms of overall performance. However, even though all three models
use similar high-level algorithms, CC-SAS offers an inherent advantage by reducing
the programming and orchestration overheads.

5.2. N-Body Problem

The performance of the N-body simulation for varying data sizes is presented in
Fig. 7. The MPI and SHMEM implementations show similar behavior across all
processor counts and data sets, since their underlying algorithms are the same. In
fact, on 16 processors, all three programming paradigms have similar runtimes
across all data sets. However, on 64 processors, performance differences between
the two basic programming schemes begin to emerge. For the 16K data set,
CC-SAS has a runtime advantage compared to MPI and SHMEM. All three
implementations benefit from larger data sizes, but the effect is more dramatic
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FIG. 7. Runtimes (in s) for the N-body problem on 16, 32, and 64 processors for different data sets.

FIG. 8. Time breakdown for the 16K data set on 64 processors.
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for message passing. At 1M bodies, the MPI and SHMEM versions significantly
outperform CC-SAS.
Figure 8 shows the runtime breakdown for the 16K test case using 64 processors.
Here the BUSY times for MPI and SHMEM are significantly higher than CC-SAS.
The message-passing versions require complex data movement and computations to
build the locally essential tree, compared to the CC-SAS global tree implementa-
tion. For this test case, the CC-SAS paradigm not only simplifies the programming
overhead, but also results in a reduced runtime. Figure 8 also shows that the MPI
version suffers from high and imbalanced RMEM and SYNC times, compared to
SHMEM. This is due to the disadvantage of having send/receive pairs in MPI,
which cause a higher communication overhead than the one-sided approach.
Figure 9 shows the time breakdown for the 1M data set. The results are quite
different compared to the 16K example. Since the data size is relatively large, the
total execution time is dominated by the force calculation. The BUSY time for all
three approaches is very similar. However, the MEM and SYNC times for CC-SAS
are much higher than MPI and SHMEM. This is because in the message-passing
implementations, the locally essential tree-building time is now negligible, and the
force calculation proceeds without the need for interprocessor communication.
CC-SAS, on the other hand, uses a global shared tree, which is physically distrib-
uted among all the processors. This results in implicit communication during the
force calculation, which causes page faults (TLB misses) and increases memory
latency.
We can improve the performance of the CC-SAS implementation for this largest
test case by locally duplicating a subset of the remote cells. Note that this would not
be a natural programming style for CC-SAS, and brings us closer to the message-
passing style of data replication. Each processor explicitly creates a local copy of
the remote cells that are frequently used during the force calculation. From our
experiments, we found that the duplication can be limited to the first four levels of
the tree, which is approximately 590 (out of more than 366K) cells for the 1M data

FIG. 9. Time breakdown for the 1M data set on 64 processors.
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FIG. 10. Runtimes (in s) on 16, 32, and 64 processors for the 1M data set, including CC-SAS-NEW
performance.

set. The improved implementation, called CC-SAS-NEW, is presented in Fig. 10.
Note that CC-SAS-NEW outperforms the original CC-SAS implementation but is
still slower than the message-passing versions. If all the remote cells required in
the force calculation (not just a subset) were duplicated in CC-SAS-NEW, this
programming strategy would effectively be the same as the locally essential tree
of MPI and SHMEM. Thus for the N-body problem, all three programming
paradigms use the same algorithm to achieve best performance; however, their
corresponding implementations are quite different.

6. CONCLUSIONS

In this paper, we studied the performance of and the programming efforts for
two different adaptive applications (dynamic remeshing, N-body) under three
leading programming models (MPI, SHMEM, CC-SAS) on an SGI Origin2000
system. In order to keep our investigation tractable and modular, we used a layered
approach. Results indicated that all three models mostly achieve similar perfor-
mance; however, the implementations differ significantly even though the same basic
parallel algorithms are used. CC-SAS provides substantial ease of programming,
and is often accompanied by performance gains. Unfortunately, CC-SAS currently
has portability limitations and may suffer from poor spatial locality of the physi-
cally distributed shared data, in which case some of the programming advantages
must be given up to obtain comparable performance. These observations are
consistent with those in our previous study on regular applications [16].
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The N-body simulation successfully achieved scalable performance across all
three programming methodologies. The CC-SAS runtime on the largest test case
was approximately 44% slower than MPI; however, the CC-SAS implementation
required 22% less code. With some explicit data replication, we demonstrated that
CC-SAS performance can be substantially improved to be within 20% of the
message-passing versions. Further improvements are expected through more explicit
control of data management. For certain projects, CC-SAS’s programming
advantages may outweigh the performance deficiencies.
The dynamic remeshing problem showed comparable performance across all
three programming models, but did not scale well on a 64-processor machine even
for the largest problem size considered. Previous research examined the mesh adap-
tation and load balancing algorithms across various programming paradigms and
architectures [11]. The dynamic remeshing simulation in this paper extended that
work by creating a complete adaptive application that combines a numerical solver
with the original parallel mesh adaptation module. To understand the overall
runtime behavior, each of the components had to be examined individually. The
solver phase was the most computationally expensive step and achieved scalable
performance across all three programming models. However, the runtimes of the
other critical modules did not decrease with increasing processor counts, creating a
potential performance bottleneck. This was true of the parallel partitioner, whose
computation and communication overheads grew with the number of processors
across all three programming models. Another dramatic example of this slowdown
behavior was seen in the CC-SAS mesh adaptor. For our largest test case running
on 16 processors, this phase accounted for 16% of the overall runtime. However, on
64 processors, the CC-SAS mesh adaptation consumed more than 33% of the total
execution time. We expect this trend to continue as the number of processors
increases. These poor performance characteristics will be magnified in unsteady
simulations that require fewer solver iterations between mesh adaptations.
Achieving scalable performance for dynamic irregular applications is eminently
challenging. Private address space methodologies have been making steady progress
toward this goal; however, they suffer from complex implementation requirements.
The use of a global address space greatly simplifies the programming task, but can
degrade the performance of dynamic adaptive applications. Previous work [11]
attempted to implement a dynamically evolving mesh adaptation code using shared-
memory algorithms and OpenMP-style directives. This naive programming strategy
resulted in extremely poor performance, compared to the MPI counterpart, since
data locality issues were not properly addressed. In this paper, we have shown
that it is possible to achieve message-passing performance using the CC-SAS
programming technique by carefully following the same high-level strategies. This
approach focuses on spatial locality through methods such as data remapping and
replication, which are traditionally not considered a part of the shared-memory
programming paradigm. In addition, fine-grained synchronizations are generally
nonscalable, and may need to be completely eliminated on massively parallel
systems. Future work with adaptive irregular applications will investigate whether
CC-SAS can remain competitive with message-passing codes on larger numbers of
processors.
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